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By considering the energetics of the wollastonite 
model in terms of the interactions between stacking 
operators we have been able to show that the model 
possesses two important features: 

(1). The interaction represented by -/4 does include 
a contribution from the configuration of  the layers 
between the j th  and ( j + 3 ) r d  neighbour layers. 

(2). The association of  spins with layer position 
used in the body of  the paper suggests that IGI must 
be one half  of  a lattice vector, but the derivation in 
terms of operators places no such constraint upon 
the magnitude of the displacement associated with 
the glide operator G. This justifies the use of the 
wollastonite model in systems such as zoisite where 
G =  1/41001]. 
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Abstract 

An exhaustive count is performed of all possible 
perovskite-like A B X 4  phases, with the assumption 
that the only occurring symmetry-reducing operation 
is the tilting of  regular B X  6 octahedra. Each structure 
is schematically represented and is fully determined 
by its structure symbol, the space group and the 
diffraction features, which are condensed in a power- 
ful shorthand notation: the 'diffraction typology'.  
Attention is paid to the displacement of the A cation 
and the resulting antiferroelectricity. The interrela- 
tions between the structures are presented in the 

* Work performed under the auspices of association SCK- 
RUCA and with financial help from IIKW. 

t Also at: SCK/CEN, B-2400 Mol, Belgium. 

'family tree' formalism in order to provide insight 
concerning the group-to-subgroup relations as a help- 
ful tool in the prediction of phase transitions. 

I. Introduction 

Perovskites with general structure formula A B X  3 such 
as SrTiO3 and NaNbO3 undergo phase transitions 
featuring the condensation of soft phonon modes 
upon lowering the temperature (Ahtee, Glazer & 
Megaw, 1972; Kay & Bailey, 1957). The perovskite- 
like A B X 4  compounds such as RbVF4 and RbFeF4 
have a basic structure that is very similar to the basic 
A B X 3  structure as can be seen by comparison of Figs. 
l ( a )  and l (b) :  in the A B X 4  case the B X  6 octahedra 
are only two-dimensionally comer linked, thus form- 
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ing mechanically independent layers of octahedral 
networks. Nevertheless, the ABX4 compounds still 
undergo phase transitions involving condensation of 
soft modes, which makes them very interesting 
examples of transitions in systems with reduced 
dimensionality. 

In general, phase transitions can be interpreted as 
symmetry reductions that are best represented by the 

- group-to-subgroup relation between the respective 
space groups belonging to the structures of the phases 
involved in the transition. Because the knowledge of 
these relations between the phases of a particular 
compound is of great importance for the understand- 
ing of the mechanisms of the transitions, the group-to- 
subgroup relations will be outlined for all derived 
ABX4 phases. 

Megaw (1973) introduced the concept 'aristotype' 
for the phase with the highest possible symmetry and 
the phases derived from it by the proper symmetry 
reductions are designated 'hettotypes'. This nomen- 
clature will be used henceforth. 

Glazer (1972) pointed out that the most important 
mechanism of symmetry reduction during the transi- 
tions in ABX3 compounds results from the tilting of 
rigid BX6 octahedra. This is feasible because the 
lattice modes that become unstable upon lowering 
the temperature such as the M3 and the R25 zone- 
boundary modes (representation when the origin is 
chosen on the A-cation position) have low frequen- 
cies and feature the in-phase oscillation of complete 
undistorted octahedra. Moreover it is generally found 
that the observed space group is identical with the 
space group of the tilted octahedral framework and 
hence remains centrosymmetric. 

The similarity of the ABX3 and the ABX4 aristotype 
structures and the occurrence of the same type of 
transitions in both cases suggest that here too the 
most important symmetry reductions will arise from 
the tilting of the regular octahedra. This is confirmed 
by many experimental facts (Abrahams & Bernstein, 
1972; Babel, Wall & Heger, 1974; Hidaka, Wood & 
Garrard, 1979; Hidaka, Wood, Wanklyn & Garrard, 
1979; Hidaka, Wood & Wondre, 1979; Hidaka, 
Inoue, Garrard & Wanklyn, 1982; Bulou, Fourquet, 
Leble, Nouet, De Pape & Plet, 1983). 

'C 

b 

(a) (b) 
Fig. 1. The aristotype structures of (a) ABX3; (b) ABX4. The BX6 

octahedra are hatched, the black circle is the A cation. 

PEROVSKITE-LIKE ABX4 PHASES 

The purpose of this paper is to provide a complete 
classification of the ABX4 hettotypes involving the 
tilting of regular octahedra. Also some attention is 
paid to the displacement of the A cation, which may 
give rise to either a ferro- or an antiferroelectric phase, 
depending on whether the symmetry reduction leads 
to a polar or a nonpolar subgroup. 

2. Structure symbol for the condensed modes 

( a ) ABX3 structures 

As previously mentioned the structures of the low- 
temperature phases when their symmetry is reduced 
through the condensation of a soft phonon can be 
interpreted in terms of the tilting of regular BX6 
obtahedra with respect to their orientation in the 
aristotype structure shown in Fig. l(a).  How the 
tilting looks when a particular tilting scheme (indi- 
cated) is applied to the octahedra forming (001) layers 
is shown in Fig. 2. This tilting scheme can be broken 
down into component tilts around the tetrad axes of 
the octahedra and from Fig. l (a)  it is clear that these 
tetrad axes are directed along the basic translations 
of the perovskite lattice. 

Obviously a symbolic structure notation able to 
discern between the possible hettotypes must contain 
information about the tilting magnitude around each 
axis and indicate whether tilting is present or not. 
Furthermore, since zone-boundary modes are con- 
sidered and the new lattice period is never more than 
two basic periods, this notation must also reveal 
whether the tilting sense along an axis is alternating 
or not. This feature will henceforth be designated as 
'tilt correlation' along an axis. 

Glazer (1972) proposed the following general nota- 
tion for the ABX3 structure, which seems appropriate 
because it is clear, concise and contains all the 
necessary information pointed out in the preceding 
paragraph: 

a'l~c k. (1) 

The first, second and third positions of this structure 
symbol contain information about the crystallo- 
graphic [100], [010] and [001] axes respectively. The 
letters a, b and c denote that the tilting magnitudes 
around each of the axes are different; whenever the 
tilting magnitudes around two or more axes are equal 

a 

Fig. 2. Tilting of regular B X  6 octahedra in the (001) layer in ABX3 
and ABX4 compounds. The tilting here would be described as 
aOa+a o. 
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Table 1. List of the 23 possible ABX3 structures as derived by Glazer (1972, 1975) 
T h e  s tructure  s y m b o l  is a c c o m p a n i e d  by  an  a p p r o p r i a t e  s p e c i f i c a t i o n  o f  the  un i t -ce l l  character i s t i c s .  T h e  s u b s c r i p t  p u s e d  for  the  un i t -ce l l  

m u l t i p l i c i t y  s tands  for  ' p s e u d o c u b i c '  referr ing  to  the  f o r m e r l y  c u b i c  axes .  

Seria l  Latt ice  M u l t i p l e  
n u m b e r  S y m b o l  centr ing  cel l  

Three-tilt systems 
(1) a+b+e + I 2ap ×2bp ×2cp ap ~ bp # cp 
(2) a+b+b + I ap # bp = cp 
(3) a+a+a + I ap = bp = cp 
(4) a+b+c - P at, # bp # cp 
(5) a+a+c - P ap = bp # cp 
(6) a+b+c - e at, # bp = cp 
(7) a+a+a - P ap = bp = cp 
(8) a+b-c  - A ap # bp # cp 
(9) a+a c A ap = bp ~ cp 

(10) a+b-b - A ap # bp = ct, 
(11) a + a a  A at, = bt, = ct, 
(12) a - b - c -  F ap # bt, # ct, 
(13) a - b - b -  F at, # bp = ct, 
(14) a a a F a t , = b t , = c t ,  

Two-tilt systems 
(15) a°b+c + I 2at,x2bt,x2ct,  a t , < b t , # c t ,  
(16) a°b+b + I ap < bt, = ct, 
(17) a°b+c - B ap < bt, # cp 
(18) a°b+b - B ap < bt, = ct, 
(19) a°b c F ap < bt, ~ ct, 
(20) a°b-b - F at, < bt, = ct, 

One-tilt systems 
(21) a°a°c + C 2% x2bt, ×ct, ap = bt, < cp 
(22) a°a°c - F 2at,x2bt,x2ct,  a t , = b t , < c t ,  

Zero-tilt system 
(23) a°a°a ° P at, x bt, x ct, at, = bp = ct, 

* These space-group symbols refer to axes chosen according to the matrix transformation 0) 
~--~. 

R e l a t i v e  p s e u d o c u b i c  
subce l l  p a r a m e t e r s  S p a c e  g r o u p  

# 90 ° 
a # 90 ° 
a # 90 ° 
a g 90 ° 
a # f l ~ y # 9 0  ° 
a # f l  # y # 9 0  ° 
a =/3 = y # 9 0  ° 

a # 90 ° 
a # 90 ° 

lmmm (No. 71) 
lmmm (No. 71) 
lm3 (No. 204) 

Pmmn (No. 59) 
Pmmn (No. 59) 
Pmmn (No. 59) 
Pmmn (No. 59) 

A 2 t / m l l  (No. 11) 
A 2 J m l l  (No. 11) 

Pmnb (No. 62)* 
Pmnb (No. 62)* 

F i  (No. 2) 
12/a (No. 15)* 
R3c (No. 167) 

lmmm (No. 71) 
14 /mmm (No. 139) 

Bmmb (No. 63) 
Bmmb (No. 63) 

F 2 / m l l  (No. 12) 
lmcm (No. 74)* 

C 4 / m m b  (No. 127) 
F 4 / m m c  (No. 140) 

Pm3m (No. 221) 

this is denoted by a repetition of the same letter. The 
superscripts i, j, k can be 0, + or - depending on the 
tilt correlation. If the tilt correlation is positive, alter- 
nate octahedra along the considered axis have the 
same sense of  tilting whereas a negative tilt correlation 
indicates that alternate octahedra are tilted in the 
opposite sense. Zero tilt correlation clearly indicates 
that no tilting at all has occurred around the con- 
sidered axis. 

The effects of tilting on the periodicity are obvious. 
Tilting around one axis will automatically double the 
periodicity along the perpendicular axes, whereas 
negative tilt correlation will also double the periodic- 
ity along the considered axis. 

Any kind of  tilting will also result in a decrease of  
the distances between the centres of  the octahedra 
along the axes perpendicular to the tilt axis and in 
the case where negative correlation occurs along more 
than one axis, the interaxial angles will al.so be 
affected, giving rise to monoclinic or triclinic unit 
cells. 

In any case the structure symbol (1) described 
above establishes the structure of a condensed mode 
unambiguously.  

Table 1 shows the 23 possible phases of  the ABX3 
structure, indicated by their structure symbol together 
with the space group, the unit-cell multiplicity and 

centring with respect to the aristotype unit cell, as 
derived by Glazer (1972, 1975). 

( b ) Extension for ABX4 structures 

It is clear from Fig. 1 (b) representing the aristotype 
structure of  the ABX4 compounds that some 
mechanical constraints are lost because vertex linking 
of the octahedra is restricted to the (001) planes. 
Nevertheless, similar phase transitions involving the 
condensation of zone-boundary soft phonons still 
OCCUr. 

Here too the most important parameter involved 
in the soft modes is tilting of the octahedra and the 
possible concomittant displacement of  the A cations. 
As for the displacement of  the B cations, distortions 
of  the octahedra are normally second-order effects; 
furthermore, it was found in RbFeF4 and CsFeF4 that 
the Fe 3+ cations are not displaced during the transi- 
tion (Abrahams & Bernstein, 1972). As can be seen 
upon inspection of Table 3, the observed space 
groups are generally identical with the space groups 
of the tilted octahedral framework. Therefore the 
tilting of octahedra will be considered as the unique 
symmetry-reducing mechanism. 

Consequently the ABX3 structure symbol (1) is 
often, although erroneously, used to describe the 
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ABX4 hettotype structures (Hidaka, Wood & Gar- 
rard, 1979; Hidaka, Wood, Wanklyn & Garrard, 1979; 
Hidaka, Wood & Wondre, 1979; Hidaka et al., 1982). 
The same notation should not be used since, 
obviously, the gain of degrees of freedom in the ABX4 
case will make the ABX3 description degenerate. 
Indeed, when a particular ABX3 tilting scheme is 
applied to the ABX4 case, one still has liberty to 
choose whether the tilt around the [100] or the [010] 
axis will be parallel or antiparallel in the alternate 
(001) layers. 

It is therefore suggested (Bulou et al., 1983) that 
the ABX3 structure symbol (1) should be extended 
with two subscripts so as to account for the supple- 
mentary degrees of freedom. The structure symbol 
for the ABX4 structure then becomes 

ai  h j  ~k 
. _ o . ,  (2) 

where the subscripts u, v indicate whether the tilt 
around [100] or [010] is parallel (p) or antiparallel 
(a) in the alternate (001) layers. So u, v can be either 
a or p, covering all possible hettotypes for the ABX4 
case. 

( c) Calculation of the superstructure reflections 

Because the number of possible hettotypes is 
tremendous when compared with the ABX3 case, our 
first aim is a computer generation of the structures, 
in order to calculate which superstructure reflections 
will be present. 

(i) Tilting of  the octahedra. The octahedra of the 
undistorted idealized ABX4 structure from Fig. l (b)  
must be tilted according to a particular tilting scheme, 
but in order to do so three rotation operations around 
the tetrad axes must be performed. 

Here a note of caution must be sounded: the com- 
mutator of two rotation operations R1 and R2 is in 
general nonzero: 

[R1, RE] # 0, 

which means that the final orientation of the 
octahedra will depend on the order of application of 
the rotation operations. It is, however, easy to prove 
that for small tilt angles (it is experimentally found 
that 10 ° is seldom exceeded) the influence of the 
sequence of the rotations on the resulting orientation 
is a second-order effect and can be neglected. 

Using the above approximation and rotating 
counterclockwise the transformation matrix for the 
tilting of the first octahedron reads: 

- y  1 , (3) 

/3 - a  

where a,/3 and y are the tilt angles around the [100], 
[010] and [001] axes respectively. 

Since only doubling of the periodicity along each 
axis is allowed, a superstructure unit cell containing 
eight octahedra will suffice for the description. 

The transformation matrices for the tilting of the 
seven remaining octahedra are to be determined from 
the considered structure symbol (2). 

(ii) Displacement of the A cations. Comparison with 
experimental results in the literature shows that some- 
times more superstructure reflections occur than can 
be explained by mere octahedral tilt. As was already 
pointed out the most feasible additional distortion is 
the displacement of the A cation. 

In order to calculate this displacement due to the 
configurational change during the phase transition, 
the interaction between the considered cation and its 
nearest neighbours has to be known at least qualita- 
tively. 

The octahedral tilt will distort the arrangement of 
the neighbouring X anions, thus disturbing the poten- 
tial hypersurface and forcing the A cation to a new 
equilibrium position. A pair potential of the type 
Coulomb-Born-Mayer  is used to describe all interac- 
tions between the A ÷ cation and its nearest neigh- 
hours: 

N 
V(e, r/, ~ )=  E Z, e2/R,(e, r/,~) 

i=1 

+A, e x p [ - g , ( e ,  r/, ~:)/p,] (4) 

with 

R,(e, 7/, ~) = [ ( x, - e )2 + (y, - rl )2 + ( z, - ~)2] 1/2, 

whereby N is the number of neighbours, (xi, yi, z~) 
the position of the ith ion and (e, r/, ~:) the displace- 
ment of the cation; Ri, A~ and p~ are respectively the 
distance and the Born-Mayer interaction parameters 
between the A cation and the ith surrounding ion 
and Z~ is the charge of the ith ion. 

The total number of neighbours accounted for is 
34, including 16 X - ,  eight B 3+ ions and ten A + ions. 
In a first-order approximation the surrounding A + 
ions are considered as fixed. The Born-Mayer interac- 
tion parameters were taken from the literature 
(Gupta, Pande, Shukla & Sharma, 1980; Upadhyaya, 
Wang & Moore, 1980). A variational procedure to 
determine e, 7? and ( causes numerical problems; 
therefore a gradient algorithm was applied. The 
resulting displacements, if any, are typically about 
0.1 to 0.2/~. 

It is obvious that there must exist an unambiguous 
relationship between this displacement and the occur- 
rence of ferro- or antiferroelectric phases. Therefore 
the dipole moments of the eight original aristotype 
subcells contained in the considered superstructure 
unit cell are calculated in order to reveal possible 
ferro- and antiferroelectric phases. Since the applied 
symmetry reduction conserves the centre of sym- 
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metry, the space group of the generated hettotypes 
being nonpolar,  the only phases featuring subcell 
dipoles must be antiferroelectric. 

The resulting dipole moments, if any, amount to 
between 0.33 × 10 -30 and 4.3 × 10 -30 Cm for the case 
of RbVF4 with tilt angles of o~ = 6,/3 = 7.2 and 3' = 9 °, 
but generally 10 x 10 -30 to 16 x 10 -30 Cm is found. 

3. The complete list of all possible ABX4 structures 

Exhaustive application of all degrees of freedom of 
the structure symbol yields 74 different hettotype 
structures. It must be emphasized that structures that 
turn out to be equivalent after the proper rotation 
have been omitted. Indeed, it should be clear that the 
structures of type 

+ ~ +  0 + ~ +  0 aaDpC and apDaC 

are equivalent and can be matched when either one 

is rotated over ~r/2 around [001] and as a con- 
sequence only one of them is to appear in the com- 
plete list. 

( a ) Schematic representation 

A schematic representation of the 45 different struc- 
tures, occurring when differences in tilting magni- 
tudes are neglected, is shown in Fig. 3; the magnitude 
indications a, b, c of the structure symbol (2) have 
been omitted because of this neglect. 

This schematic representation is sufficient for the 
determination of the space groups of all occurring 
hettotype phases. 

( b ) Diffraction typology 

For the sake of clarity and conciseness the results 
of the computer calculations will be abbreviated in 
a useful code, which will henceforth be called the 

'o , * 

o00 

• i: ~0 .li: 

~0 .i~ ~0 

-pO0 

,~. .~,P. 

p pO 

%~ ~°,a %" 

~>o 4 • ~o 4 

+a-pO 

~+1~ 4-1> ,,J*ll. 

<~-I~. 4*1> <~-I, 

.,:)÷~ 4--C' <]4-I' 

+aO+ 

• ,~ +,~ 

_,~ ,p+ _,~ 

+p+p+ 

<)el* 4e(> <low e ~  :~o e ~  4oi> <)o~ 4eC, 

<loire, 4o(> <)ol* e~: ~ e  o~  <~o1~ 4e~> <1o~. 

<~op 4oE> <]o1~ o~ ~o  o~ 4o1> <~o~ 4 o ~  

+aO0 +pO0 -aO0 

,v. ~, ,v. ,,~. ~,., ,.~ ,o 4 / , , .  

+p+p 0 +a+p 0 +a+a 0 

• *'~ ,~* .'~ 

,~. .~ ,'. ,,. ,~. 

-p -a  0 - a - a  0 +p-p 0 

'::7 t:,o4 + - + ',::7 ~o • 4 04 iPO 4 ~'O 4 

• ~ ~. .~ / ~ ~o '~ o ~ * - 

~7 004 ,./o 4 + - . 

+p-a 0 +a-aO 0 0 +  

-i: ~+ -i: ~-~ ~+~ ,~-t> ~- +i: ~- 

+i: ~- +~: ,~+,, ~-c, ,~+~ += ~- +~: 

+pO + - a  0 + -pO  + 

,,+, c,~ ~+, %, c '~ %, *,~ ~ *,~ 

+a+p+ +a+a + - p - p  + 

L, • .-4 

a p + -a-a + +p-p + +a-p + 

+~ ~ ,~ ~ / ~ ® e ® <0, .,e . . . .  0,. 

-.: ~. ~ v _  * * 4  ~ ' 4  O • e : o >  ~®~> .~eD, 
-4 ~ -4 4 

+p-a + +a-a  + 0 0 -  +a O -  

ek: ~® e~: ,,ec> ,~e,..,e~ ~ie ®i~ ~e e "~ ÷~ e ~, 

+pO - -aO - - p O -  +p + p -  

,o,,.~ ,o, f l  ,®, / % . , %  < ~, < 

+a+p - +a+a - -p -p -  a p 

a a +p-p-  + a - p -  +p -a -  

'e~ '9'~ ~®" c b 
+a-a- 

Fig. 3. Schematic representation of the 45 structures occurring when the difference in tilting magnitude is neglected. The black arrowheads 
indicate the displacement of the top vertices of the octahedra in one (001) layer, whereas the white arrowheads indicate displacements 
in the next layer. Dots, plus and minus signs represent the tilting sense around [001] where a dot indicates that there is no tilting 
and the signs indicate tilting in an opposite sense. Encircled signs stand for negative tilt correlation along [001]. The structure symbol 
is somewhat simplified because tilting magnitudes were neglected. 
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'diffraction typology'. All indices of occurring reflec- 
tions will be referred to a superstructure unit cell, 
whereby the original aristotype unit cell is double 
along each of its three basic crystallographic axes. 

The various types of reflections are then indicated 
using the following Brillouin-zone notation, where 
the letter u ( u n g e r a d e )  indicates an odd index whereas 
the letter g (gerade)  indicates an even index. 

F = ggg  A = uuu  
X = ugg R = ugu 
Y = gug  S = guu  
Z = ggu  M = uug. 

F represents the basic structure reflections and X, Y, 
Z, A, R, S and M are superstructure reflections 
occurring at zone boundaries, as is illustrated in 
Fig. 4. 

This code will provide a powerful shorthand rep- 
resentation of the reflections occurring in a particular 
phase, by simply stating which types of reflections 
are not systematically absent. 

Because the presence of the basic structure reflec- 
tions F is trivial they will be omitted. 
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Fig. 4. The Brillouin-zone code used for the diffraction typology. 

For example: the phase with its structure represen- 
ted by the symbol 

a~b~c- ( P m m n  ) 

has a diffraction typology A X Y R S M ,  which is rep- 
resented schematically in Fig. 5. This is of course a 
tremendous simplification of the very extensive 
results, but complete structure-factor listings are 
obtainable from the authors. 

( c) Ant i ferroelectr ic i ty  

As pointed out before, the phases featuring subcell 
dipoles must be antiferroelectric. The arrangement of 
the dipoles in these antiferroelectric phases is best 
expressed by a schematic drawing whereby the 
dipoles are represented by arrows. This is done in 
Fig. 6 where the dipole configurations resulting from 
the application of some experimentally observed tilt- 
ing schemes are displayed. Other results will not be 
presented here for the sake of conciseness. It must 
be remarked that sometimes more than one type of 
dipole is found within one phase. Indeed, when more 
than one magnitude of A cation displacement is found 
it is generally expected that as many dipole types as 
displacement types will occur. 
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Fig. 5. Example of diffraction typology showing which superstruc- 
ture reflections are not systematically absent for the case 
AXYRSM. 
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Fig. 6. Arrangement of the subcell dipoles for various experi- 
mentally observed tilting schemes for RbVF4. The figures 
between brackets indicate the calculated subcell dipole moments 
in Cm units. (a) a~,a~c ° (14.6 × 10-3°); (b) _+_o_+ 

30 + + + 430 a p a  C (12"0×10 -3°, 
11"3×10- ); (c) apbpc (14.4x10- ); (d) a~b~c- (14-Ox 
10-3o). 
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Table 2. List of  the 75 possible ABX4 structures as derived in the present work 
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Lat t ice  Un i t - ce l l  Di f f rac t ion  

S y m b o l  c e n t r i n g  m u l t i p l i c i t y  Z Space  g r o u p  No.  t y p o l o g y  

a°a°c ° P a x b x c 1 P 4 / m m m  123 
+ 0 0  apa c P a x2b  xc  2 Pmmb 51 Y 
+ 0 0  a,,a c A a x2b  x2c 4 A m m m  65 S 

a~a°c ° C 2a x2b  x c 4 Cmma 67 M 

a :a°c  ° F 2a x2b  x2c 8 Fmmm 69 A 
+ + o P 4 / n m m  129 X Y M  a p a r t  P 2 a x 2 b  x c  4 
+ . +  0 apapc P 2a x 2b x c 4 Pmmn 59 X Y M  
+ + 0 aaapC A 2a x2b  x2c 8 Amma 63 AXS 
+ . +  0 aaDpC A 2a x2b x2c 8 Amma 63 AXS 
+ + 0 a~aoc I 2a x2b  x2c 8 1 4 / m m m  139 RSM 
+ . +  0 aaDa c I 2a x2b x2c 8 lmmm 71 RSM 

apapc ° C 2a x2b  x c 4 Pman 53* M 

a~b~c ° C 2a x2b  x c  4 C l l 2 / b  13 M 
apaoc ° C 2a x2b  x2c 8 Cccb 68 AZM 
a~b~c ° C 2a x 2b x 2c 8 Cccb 68 AZM 

a~-a~c ° F 2a x2b  x2c 8 lbmm 74* A 

a~b~-c ° F 2a x2b  x2c 8 F l l 2 / m  12 A 
+ - -  0 avavc P 2a x2b  x c 4 Pmab 57 X Y M  
+ - -  0 apbpc P 2a x2b  x c 4 Pmab 57 X Y M  
+ - -  0 aaapC I 2a x2b  x2c 8 Imca 72 RSM 
+ - -  0 aabpc I 2a x2b  x2c 8 lmca 72 R S M  
+ - -  0 apaac B 2a x2b  x2c 8 Bmab 64 A Y R  
+ - 0 a v bac B 2a x 2b x 2c 8 Bmab 64 A YR 
+ - -  0 aaa~c A 2a x2b  x2c 8 Amam 63 AXS 
+ - -  0 aob,~c A 2a x2b  x2c 8 Amam 63 AXS 

a°a°c ' C 2a ×2b × c 4 P 4 / m b m  127" M 
+ 0 + apa c P 2a x2b  x c 4 Pmmn 59 X Y M  
+ 0 + a,~a c I 2a x2b x2c 8 Immm 71 R S M  

a~a°c + C 2a x2b  x c 4 C l 2 / m l  12 M 
a :a°c  + C 2a x 2b x 2c 8 Ccmm 63 AZM 

+ + + apapc P 2a ×2b x c 4 Pmmn 59 X Y M  
+ + + apbpc P 2a x2b  x c 4 Pmmn 59 X Y M  
+ + + a,~apc P 2a x2b  x2c 8 Pmmn 59 A X Y R S M ( Z )  
+ + + aabpc P 2a x2b  x2c 8 Pmmn 59 A X Y R S M ( Z )  
+ + + aaaac  I 2a x2b  x2c 8 Immm 71 RSM 
+ + + aabac  I 2a x2b  x2c 8 Immm 71 R S M  

apapc + C 2a ×2b x c 4 P 2 / b l  I 13" M 

a~bpc + C 2a x2b  x c 4 Pi" 2* M 
aoapc + C 2a x2b  x2c 8 C 1 2 / c l  15 AZM 
a : b ~ c  + C 2a x2b  x2c 8 C 1 2 / c l  15 AZM 
a,~aac + C 2a x2b  x2c 8 Pbnm 62* AZM 

a~b~c + C 2a x2b  x2c 8 P 1 1 2 J m  11" AZM 
+ - + P 2 1 / m l l  11 X Y M  avapc P 2a x 2 b x c  4 
+ - + P 2 J m l l  11 XYM apbpc P 2a x2b  xc  4 
+ - + aaapc I 2a x2b  x2c 8 1 2 / m l l  12 RSM 
+ - + aabpc I 2a x2b  x2c 8 1 2 / m l l  12 RSM 
+ - + ap a,~ c P 2a x 2b x 2c 8 Pmcn 62 A X Y Z R M ( S )  
+ - + P 2a x2b  x2c 8 Pmcn 62 A X Y Z R M ( S )  

ap+b~_c+ A X Z R S M  ( Y)  aaaaa  P 2a x2b  x2c 8 Pmnm 59 
+ - + ao ba c P 2a x 2b x 2c 8 Pmnm 59 A X Z R S M (  Y)  

a°a°c - F 2a x 2b x 2c 8 F 4 / m m c  140 A 
a~a°c - B 2a x 2b x 2c 8 Bmmb 63 A YR 

+ 0 - -  aaa  c A 2a x2b  x2c 8 Amma 63 AXS 
a~a°c - C 2a x2b  x 2 c  8 Ccmb 64 AZM 

a~a°c - F 2a x2b  x2c 8 F 1 2 / m l  12 A 
+ + - ap ap c P 2a x 2b x 2c 8 Pmmn 59 A X Y R S M ( Z )  
+ + - apbvc P 2a x2b  x2c 8 Pmmn 59 A X Y R S M ( Z )  
+ + - aaapc A 2a x2b  x2c 8 Amma 63 AXS 
+ + - aobvc A 2a x2b  x2c 8 Amma 63 AXS 
+ + - aaaac  P 2a x2b  x2c 8 Pmmn 59 A X Y R S M  
+ + - aoba¢ P 2a x2b  x2c 8 Pmmn 59 A X Y R S M  

avape C 2a x2b  x2c 8 Pcan 60* AZM 

a~b~c-  C 2a x 2b x 2c 8 P1121/n 14" AZM 
apaac C 2a x2b  x2c 8 C 1 2 / c l  15 AZM 

a~b~'c- C 2a x2b  x2c 8 C12 /c l  15 AZM 
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Table 2 (cont.) 

Lattice Unit-cell 
Symbol centring multiplicity Z Space group No. 

a~a~c- F 2a x2b x2c 8 12/bll 15" 
a~b~c- F 2a x2b x2c 8 I1 2* 

+ - _ 

apapc P 2a x2b x2c 8 Pmnb 62 
a~b~e- P 2a x2b x2c 8 Pmnb 62 

+ - _ 

a,~at, c P 2a x2b x2c 8 Pmca 57 
+ 

a~bpc_ _ P 2a x2b x2c 8 Pmca 57 
a~,aac B 2a x2b x2c 8 B2/mll  12 
a;b+ ~_c- B 2a × 2b × 2c 8 B2/m 11 12 
aaa~c A 2a x2b x2c 8 A21/mll 11 
a+b~c - A 2a x2b x2c 8 A 2 J m l l  11 

* These space-group symbols refer to axes chosen according to the matrix transformation 

,~_~ . 

0 

Diffraction 
typology 

A 
A 

AXYZRM(S) 
AXYZRM(S) 
AXZRSM (Y) 
AXZRSM (Y) 

A YR 
AYR 
AXS 
AXS 

( d) Complete list of hettotype structures 

The complete list is shown in Table 2 and contains 
information about all generated phases. 

The lattice centring, unit-cell multiplicity and Z, 
the number of octahedra contained in it, are all refer- 
red to a new unit cell expressed in terms of the lattice 
parameters of  the aristotype (i. e. the basic translations 
have to be taken along the former tetragonal axes a, 
b, c of the aristotype). 

It should be noticed that the possibilities of  the 
international Hermann-Mauguin symbols for space 
groups are exploited at a maximum in order to avoid 
any unnecessary changes of the axial setting. This 
will be of  great help when the group-to-subgroup 
relations have to be established. 

Sometimes, however, a transformation of the type 

[i 01] ~ - 5  0 
1 
2 

0 
( 5 )  

is necessary and those space groups referring to axes 
transformed according to (5) have been labelled with 
an asterisk. 

For the diffraction typology, the supplementary 
superstructure reflections due to the A-cation dis- 
placements are added in brackets. It is noticeable that 
it is only in a few cases with positive and negative 
tilt correlation along [001] that these supplementary 
reflections appear. 

A brief survey of some already determined ABX 4 
phases is given in Table 3. Here, use is made of  the 
structure symbol for ABX4 structures and whenever 
necessary the data provided by the authors were used 
to determine or extend it properly. Space-group sym- 
bols marked with an asterisk again refer to axes 
chosen according to the matrix transformation (5). 
The complete list of  hettotype structures was 
presented at the XIIIth International Congress of 

Table 3. Survey of already determined ABX4 structures 

In the case of  Hidaka,  Wood & Garrard (1979), Hidaka,  Wood,  
Wanklyn & Garrard (1979), Hidaka,  Wood & Wondre {1979) and 
Hidaka et al. (1982),the data  provided by the authors were used 
to establish the structure symbol. Also the observed space group 
is compared with the space group of the tilted octahedral 
framework. 

Space group 
Material Phase Symbol observed framework Reference 

CsVF4 (III) a.+b~c + Pmmn Pmmn 
a6.a+cO (a) (II) aOa~ ° Pmma Pmma (a) 

(I) P4/mmm P4/mmm (a) 

CsFeF4 (IV) P21212 Pmmn (b)(c) 

(III) Pmmn Pmmn (b)(c) 
(III) Pmab Pmab (d) 
(III) P4/nmm P4/nmm (e) 
(II) Pmma Pmma (b)(c) 
(I) P4/mmm P4/mmm (b)(c) 
(III) Pmab Pmab ( d) 

(III) P21212 Pmmn (b) 

RbFeF4 

+ . +  o ") 
a p D p C  

a~b~c + ) 
+ + + 

apbpc 
+ - 0 

a p a p C  

a+.a~c ° 
a~a+c o 
aOa~'io 

+ - 0 
a p a p C  

{ a;b;c°~  
a ; b ; c + J  
aOa+c o 
a°a~i ° 

+ + + 
apbpc 

+ - + 
aabac 

+ 0 + a_a c 
a/;aOc + 
a+b~c + 
a ~ a ° c  + 

aOaOcO 

a:aoc 
a O a O  c -  

aOaOc o 
aOaOc + 
a O a O c  - 

(II) Pmma Pmma (b) 
(I) P4/mmm P4/mmm (b) 

RbVF 4 (V) P21212 Pmmn (f) 
(IV) P212121 Pmnm (f) 
(III) Pmmn Pmmn (f) 
(II) C4/mbm C4/mbm (f) 

RbAIF4 (III) Pmmn Pmmn (g) 
(II) C4/mbm C4/mbm (g) 
(I) P4/mmm P4/mmm (g) 

TIAIF 4 (III) ('2/rn . l12/a 1" (g) 
(II) 14/mcm: 14/mcm (g) 
(I) P4/mmm P4/mmm (g) 

KAIF4 (II) C4/mbm C4/mbm (g) 
NH4AIF 4 (II) F4/ mcm F4/ mcm (g) 

References: (a) Hidaka, Wood & Garrard (1979); (b) Hidaka, Wood, 
Wanklyn & Garrard (1979); (c) Hidaka, Wood & Wondre (1979); (d) 
Abrahams & Bernstein (1972); (e) Babel, Wall & Heger (1974); (f)  Hidaka, 
Inoue, Garrard & Wanklyn (1982); (g) Bulou el aL (1983). 

* This space-group symbol refers to axes chosen according to the matrix 
transformation 

0 
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Crystallography, Hamburg (Deblieck, Van Landuyt 
& Amelinckx, 1984). Since it is technically impossible 
to publish some of the results of this work in extenso, 
complete printouts containing coordinates, structure 
factors, A-cation displacements and subcell dipole 
data for specific compositions and tilt angles are 
a v a i l a b l e  at t h e  a u t h o r s '  l a b o r a t o r y .  

Recently, the complete list was used in order to 
interpret the experimental results of an electron 
microscopic study of R b V F 4  and RbFeF4 (Deblieck, 
Van Landuyt, Garrard, Wanklyn & Amelinckx, 1984; 
Deblieck, Van Landuyt & Amelinckx, 1985). 

4. Group-to-subgroup relations 

As previously mentioned it is useful to have a closer 
look at the group-to-subgroup relations because they 
allow a better understanding of the symmetry depen- 
dence between the structures of the aristotype and its 
hettotypes, especially when the study of phase transi- 
tions is aimed at. 

B~irnighausen (1975, 1980) introduced the concept 
of a 'Stammbaum' or 'family tree' by which it is 
possible to get a complete overview of the symmetry 
relations between all members of a family of struc- 

Q 
p4mm 
aOaOc o 

...~t 2a,2b ~ - b , a . b _  

C 4 m m  Pmmm F4mc Cmmm" p4brn" 
aOaOc - aoaoc • 

2b~2a,2b.2c \l(a~'-b).l(a+b) 2¢~ 2c ~ ~ \ 

I 4 ram p4mm Pmmb Cmrna A mmm Fmmm I bam" I bmrn" Pban" Pbam" 
a;a~*c ° a~,a;c ° a~a°c ° a; °c° a~*a° c ° a;a°c ° a;a;c ° X 

/ /  / /  \ 

, / /  \ \ ,,, .,,, \ "-,>,, \ 

Immm Pmmn Pman Pmab C1-2ml Imca C11-~ Bmab Bmmb Amam Amma Ccmb Cccb Cccm F12"I F l l -2  m Pcan" {.~11" p211* Pbnrn" 
a~b~*c* a~a°c '' a~apC ° a~,a;c ° apaoc + a~apC ° a~b~c ° a~a;c* a~.a°c - a~*a;c ° a~*a°c - a~a°c - a~a;c ° a;a°c " a;a°c" a;b~c ° a~a~c- a;a;c- a~apc + a;a~c + 
a;a°c '' a~ a;c" 
a;a;c* a; b;c" 

i \ \  \ \ \  / \  \ \  / " , Z \  . 

i \ \ t2c/2c ",, \ A / / 2 a  / 
I / \N 

I,~11 
a : a ; e  ° 
a:b;c* 

a;b;c ° a;b;c ° a;b;c ° 

I 
I ® 

Pmnm Pmmn Pmcn P-~11 B211 
a*.a.c ° a**a+c * a**a~c + a+a~c + a**a~c- 
a;b;c" a~*b~c + a~b;c" a'~bpC + a ; b ; c -  

a ; a ; c -  
a p b ; c "  

÷ 4. - a a a = c  
a~b*c ° 

a ; b ; c  ° a : a ; c  ° . a ;b~c ° 
a* b~,c ° A /~_ ~ ./ I .1 

/ x  a!a;c- / /  ! / \ \  \~ / /  ] / '  
/ \ a.b.c - / /  I / , \ ~  I / 

/ ~'.~,'P / I I /1(a-b~!(a,b) ~'~ I / 

-.<" 17-. ; I ',\," 
' ' ~ ' x  b, / b!a \.b~a b , / a  -/ \ \  \ X ! 
r(~-b)'-,Z / b, ,  / / '\ '~.i\ 
;(,a.b').2c/ ~ J I \d / \/~ \ 
• 7 , , ,  7~ ,  I 7-, / ~: \ , 
, .  / \ r ,. I / "",, I / \ .  \ \ 

_ I", ,"f\ / \ \  \ 
I / \ / \ \  , 

1 ~N~-'-' ~ \ l~(a..'b),~,a...b)// "\ I \~\ ~(a-b),½!a~ 
II \I !I\ /'-., /",, \I 

Pmnb Pmca C211 P l 1 ~ "  P i "  A-~11 I~ P l l  2'" 
a**a;c- a~a;c- a;a;c* apb;C- a;b;c* a~*a;c- a;b;c- a;b;c ÷ 
a~b;c- a*,b;c- a;b;c* aIb;c- 

a;apC- 
a;b;e- 

Fig. 7. Family tree of  the 75 possible ABX4 structures as derived in the present work. The space groups labelled with a dot refer to 
axes chosen according to the transformation (5). 
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tures, since in general the different phases of a par- 
ticular compound are symmetry related. 

It has to be emphasized, however, that the mere 
existence of a symmetry relationship between two 
phases does not automatically imply that a phase 
transition is possible. In fact it proves to be necessary, 
in general, to check on the Landau criteria to point 
out whether an actual relationship between the struc- 
tural symmetry of two phases also stands for a phy- 
sical transition. 

Furthermore the symmetry relationships between 
experimentally observed phases are not necessarily 
the product of one symmetry-reducing mechanism as 
is the case here. 

The B~irnighausen family tree consists of 'equisym- 
metrical' levels, on which all phases with the same 
number of symmetry elements are indicated with their 
space group, structure and phase indication (e.g. o~- 
NaTiF4). The aristotype structure will obviously 
occupy the highest level since it possesses the highest 
symmetry allowed. In between the levels, the sym- 
metry reductions between single phases are symbol- 
ized by arrows, which carry information on the type 
and index of the symmetry reduction and, if 
necessary, transformation of the unit cell. 

Three types of symmetry reduction are discerned: 
(i) isomorphic (i); 
(ii) klassengleiche (k); 
(iii) translationengleiche ( t). 

In isomorphic symmetry reductions the space group 
of the higher symmetric phases Go is equivalent to 
the space group of the lower symmetric phase H. 

For klassengleiche symmetry reductions the point 
group is conserved in the descent but translation 
symmetry is lost, whereas for the translationengleiche 
reductions the translation symmetry is conserved but 
the point group is reduced in symmetry. The index n 

of the symmetry reduction is defined as: 

n = I G o l / I n l ,  

where IGol and 1/41 represent the order of the group 
Go and its maximal subgroup H, respectively. 

The group-to-subgroup relation between a par- 
ticular group and its maximal subgroups (i.e. sub- 
groups of lowest index) can be derived by the use of 
the character tables of the space groups; however, 
much redundant labour is avoided by using the tables 
of Neubiiser & Wondratschek (1966), which give all 
maximal subgroups, classified according to the type 
of symmetry reduction involved with their index and 
necessary unit-cell adaptations for a particular space 
group. These tables have been incorporated in Inter- 
national Tables for Crystallography (1983) and they 
have also been inverted so that the minimal super- 
groups for each particular space group can be 
obtained. 

The family tree of all 74 ABX4 hettotype structures 
contained in the complete list, derived from the aris- 
totype by the previously described symmetry reducing 
mechanism, is shown in Fig. 7 in a presentation that 
is optimized for conciseness. The structure symbol 
takes the place of the structure and phase indication; 
the number of the space group is encircled. All sym- 
metry reductions are of index 2; therefore the 
index is omitted. The klassengleiche reductions are 
marked by full lines, the translationengleiche reduc- 
tions are in broken lines whereas the isomorphic 
reductions are represented by full lines carrying an 
index i. 

Necessary unit-cell transformations are given 
by the lattice parameters involved (i.e. if a lattice 
parameter is not mentioned it remains unchanged). 

This family tree can be compared with the family 
tree of experimentally observed ABX4 structures 

l /#m 21c2/m P ~ 2  m 

~ t 2  k~/ g-J~,,g*~, 2!; % /  
1/ ,c2 [~-¢-mq 

P/,Ira 2/m 21m 

g-~,g~,2; ~-b,g.b,; GJQ, G~,G ~ _  . . . . . .  

P 41m 211b 21m C 2/m 21m 21m P 21m 2/m 21rn P ~lm 2/m 2hn 
/ \ 

k2 k2 g,b,2~ 
~,~,2; (-~,o,-9 

1 2/c 2/m 2/m C 2/m 2/c 2,/m 
/ \ / \ 

k2 k2 k2 t2 (_~;~_~) , , (-~,-~,0) 

l 21c I 1 P 2/b 2In 2~ln 
I~-sb~o, leJsbo, I 

I 
t2 

Pbn21 

\ 
P 2,1b 2/c 21/n 

I a-,,Ti ~, I 

J2 /2 
; 1 

P 2~/m 2/m 2/o P ~ln 2~lm 21m 

k2 k2 
g,2b,;~ 9,2~,C..,~ I 2 

P 2,/b 2,/m 2/o P 2Jm 2~/rn 2/n ]RbFeF, IBaU0,1 I 
I k2 g,p,2; 
t2 

Fig. 8. Family tree of experimentally observed A B X  4 structures. (Courtesy: H. B~irnighausen.) 
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(Meyer, 1981), which is shown in Fig. 8. The two 
family trees are related to the extent that the 
only descent in symmetry they can have in common 
must be caused solely by the tilting of rigid octa- 
hedra. 

It must be mentioned that a family tree of RbAIF4 
and RbVF4, whereby the maximal subgroups are 
derived by making use of a decomposition of the 
factor groups, was recently published (Loyzance & 
Couzy, 1984). This family tree, however, is restricted 
to one line of descent along the space groups of the 
phases involved in observed transitions in RbA1Fe4 
and RbVF4: 

P 4 /  m m m  ~ P 4 /  m bm ~ P m m n  ~ P212121 ~ P21212 

and is therefore of a different kind from the present 
one shown in Fig. 7 which considers all possible lines 
of descent but is restricted to a particular mechanism 
of symmetry reduction. 

5. Concluding remarks 

The present work is meant as a practical and useful 
guide for scientists involved in the field of structural 
investigation of the low-temperature phases and 
phase transitions between them, in the perovskite-like 
A B X 4  case. 

As for the use of this formalism in the field of phase 
transitions, more specifically the part on group-to- 
subgroup relations, it must be emphasized that addi- 
tional calculations based on Landau theory may be 
necessary to find out whether a transition is physically 
feasible. 
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